MATH 20D Spring 2023 Lecture 5.
 Separable ODE's and Intergrating Factors

Outline

(1) Separation of Variables

(2) Integrating Factors

Announcements

- The late due date for HW is 10pm Saturday

Announcements

- The late due date for HW is 10pm Saturday
- The first MATLAB assignment is due this Friday at 11:59pm.

Announcements

- The late due date for HW is 10pm Saturday
- The first MATLAB assignment is due this Friday at 11:59pm.
- You must fill out the Commencement of Academic Activity Survey which is available via the Quizzes tab in Canvas. Please do this is as soon as possible, but no later than Friday this week.

Announcements

- The late due date for HW is 10pm Saturday
- The first MATLAB assignment is due this Friday at 11:59pm.
- You must fill out the Commencement of Academic Activity Survey which is available via the Quizzes tab in Canvas. Please do this is as soon as possible, but no later than Friday this week.
- You should bring a scientific calculator to both midterms and the final exam. You may also bring a double sided handwritten page of notes.

Contents

(1) Separation of Variables

(2) Integrating Factors

Separation of Variables I

Definition

We say that a first order ODE is separable if it can be factorized into the form

$$
\frac{d y}{d x}=g(x) \cdot p(y)
$$

where g and p are functions of x and y respectively.

- In many cases, we can apply a technique known as separation of variables to determine all the solutions to a given separable equation.

Separation of Variables II

Example

Using the method of separation of variables, find all solutions to the ODE

$$
\frac{d y}{d x}=-x y .
$$

Determine which of your solutions satisfies the initial condition $y(0)=1$.

Separation of Variables II

Example

Using the method of separation of variables, find all solutions to the ODE

$$
\frac{d y}{d x}=-x y .
$$

Determine which of your solutions satisfies the initial condition $y(0)=1$.
Step 1: Consider potential constant solutions arising from

$$
p(y)=0 .
$$

Separation of Variables II

Example

Using the method of separation of variables, find all solutions to the ODE

$$
\frac{d y}{d x}=-x y .
$$

Determine which of your solutions satisfies the initial condition $y(0)=1$.
Step 1: Consider potential constant solutions arising from

$$
p(y)=0 .
$$

Step 2: Rearrange to the form $\frac{d y}{p(y)}=g(x) d x$ and apply \int to both sides.

Separation of Variables II

Example

Using the method of separation of variables, find all solutions to the ODE

$$
\frac{d y}{d x}=-x y .
$$

Determine which of your solutions satisfies the initial condition $y(0)=1$.
Step 1: Consider potential constant solutions arising from

$$
p(y)=0
$$

Step 2: Rearrange to the form $\frac{d y}{p(y)}=g(x) d x$ and apply \int to both sides. The result of steps $1 \& 2$ is an implicit solution to the ODE of the form

$$
H(y)=G(x)+C
$$

where C is an arbitrary constant, $H^{\prime}(y)=1 / p(y)$, and $G^{\prime}(x)=g(x)$.

Separation of Variables II

Example

Using the method of separation of variables, find all solutions to the ODE

$$
\frac{d y}{d x}=-x y .
$$

Determine which of your solutions satisfies the initial condition $y(0)=1$.
Step 1: Consider potential constant solutions arising from

$$
p(y)=0
$$

Step 2: Rearrange to the form $\frac{d y}{p(y)}=g(x) d x$ and apply \int to both sides. The result of steps $1 \& 2$ is an implicit solution to the ODE of the form

$$
H(y)=G(x)+C
$$

where C is an arbitrary constant, $H^{\prime}(y)=1 / p(y)$, and $G^{\prime}(x)=g(x)$.
Step 3: If possible, simplify the implicit solution to obtain an explicit solutions.

Newton's Law of Cooling

Newton's Law of Cooling

Suppose B is a solid body of temperature $T(t)$ at time t. There exists a constant

$$
\left.k_{B}>0 \quad \text { (independent of } T \text { and } t\right)
$$

such that if B is placed in an environment with temperature $M(t)$ at time t then

$$
T^{\prime}(t)=k_{B}(M(t)-T(t)) .
$$

Newton's Law of Cooling

Newton's Law of Cooling

Suppose B is a solid body of temperature $T(t)$ at time t. There exists a constant

$$
\left.k_{B}>0 \quad \text { (independent of } T \text { and } t\right)
$$

such that if B is placed in an environment with temperature $M(t)$ at time t then

$$
T^{\prime}(t)=k_{B}(M(t)-T(t)) .
$$

Example

A $4: 00 \mathrm{pm}$ a $95^{\circ} \mathrm{C}$ cup of coffee is served at a cafe where the temperature is a constant $21^{\circ} \mathrm{C}$.

- Given that the coffee cools to $80^{\circ} \mathrm{C}$ after 5 minutes, use Newton's law of cooling to determine the temperature of the coffee $4: 25 \mathrm{pm}$.

Newton's Law of Cooling

Newton's Law of Cooling

Suppose B is a solid body of temperature $T(t)$ at time t. There exists a constant

$$
k_{B}>0 \quad \text { (independent of } T \text { and } t \text {) }
$$

such that if B is placed in an environment with temperature $M(t)$ at time t then

$$
T^{\prime}(t)=k_{B}(M(t)-T(t)) .
$$

Example

A $4: 00 \mathrm{pm}$ a $95^{\circ} \mathrm{C}$ cup of coffee is served at a cafe where the temperature is a constant $21^{\circ} \mathrm{C}$.

- Given that the coffee cools to $80^{\circ} \mathrm{C}$ after 5 minutes, use Newton's law of cooling to determine the temperature of the coffee $4: 25 \mathrm{pm}$.

When $M(t)$ is non-constant, Newton's Law of Cooling often gives a 1st order linear ODE which is not separable e.g. if $M(t)=e^{-t}$ then $T^{\prime}(t)=k_{B}\left(e^{-t}-T(t)\right)$.

Contents

(1) Separation of Variables

(2) Integrating Factors

The Method of Integrating Factors I

- Recall that a first order linear ODE is an equation of the form

$$
\begin{equation*}
a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a_{1}(t), a_{0}(t)$, and $g(t)$ are functions of t.

The Method of Integrating Factors I

- Recall that a first order linear ODE is an equation of the form

$$
\begin{equation*}
a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a_{1}(t), a_{0}(t)$, and $g(t)$ are functions of t.

- The method of integrating factors is a robust way of solving (1). It works even in the case when (1) is not separable.

The Method of Integrating Factors I

- Recall that a first order linear ODE is an equation of the form

$$
\begin{equation*}
a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a_{1}(t), a_{0}(t)$, and $g(t)$ are functions of t.

- The method of integrating factors is a robust way of solving (1). It works even in the case when (1) is not separable.

Step 1: Rewrite the the ODE (1) in the form

$$
\begin{equation*}
y^{\prime}(t)+P(t) y=Q(t) \tag{2}
\end{equation*}
$$

where $P(t)=a_{0}(t) / a_{1}(t)$ and $Q(t)=g(t) / a_{1}(t)$.

The Method of Integrating Factors I

- Recall that a first order linear ODE is an equation of the form

$$
\begin{equation*}
a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a_{1}(t), a_{0}(t)$, and $g(t)$ are functions of t.

- The method of integrating factors is a robust way of solving (1). It works even in the case when (1) is not separable.

Step 1: Rewrite the the ODE (1) in the form

$$
\begin{equation*}
y^{\prime}(t)+P(t) y=Q(t) \tag{2}
\end{equation*}
$$

where $P(t)=a_{0}(t) / a_{1}(t)$ and $Q(t)=g(t) / a_{1}(t)$.
Step 2: Multiply both sides of (2) by the integrating factor

$$
\mu(t)=\exp \left(\int P(t) d t\right)
$$

The Method of Integrating Factors I

- Recall that a first order linear ODE is an equation of the form

$$
\begin{equation*}
a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

where $a_{1}(t), a_{0}(t)$, and $g(t)$ are functions of t.

- The method of integrating factors is a robust way of solving (1). It works even in the case when (1) is not separable.

Step 1: Rewrite the the ODE (1) in the form

$$
\begin{equation*}
y^{\prime}(t)+P(t) y=Q(t) \tag{2}
\end{equation*}
$$

where $P(t)=a_{0}(t) / a_{1}(t)$ and $Q(t)=g(t) / a_{1}(t)$.
Step 2: Multiply both sides of (2) by the integrating factor

$$
\mu(t)=\exp \left(\int P(t) d t\right)
$$

Step 3: Integrate the equation $\frac{d}{d t}(\mu(t) y(t))=\mu(t) Q(t)$ to obtain the solution

$$
y(t)=\frac{1}{\mu(t)}\left(\int \mu(t) Q(t) d t+C\right)
$$

The Method of Integrating Factors II

Example

Find the general solution to the ODE

$$
\frac{1}{2} y^{\prime}(t)+y(t)=e^{-t}
$$

via the method of integrating factors.

The Method of Integrating Factors II

Example

Find the general solution to the ODE

$$
\frac{1}{2} y^{\prime}(t)+y(t)=e^{-t}
$$

via the method of integrating factors.

Example

Construct a solution to the ODE

$$
\frac{d y}{d x}+y=\sqrt{2+\cos ^{2}(x)}
$$

satisfying $y(1)=4$.

